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A Random Pattern-Mixture Model for
Longitudinal Data With Dropouts

Wensheng GUO, Sarah J. RATCLIFFE, and Thomas T. TEN HAVE

Pattern-mixture models are frequently used for longitudinal data analysis with dropouts because they do not require explicit specification of
the dropout mechanism. These models stratify the data according to time to dropout and formulate a model for each stratum. This usually
results in underindentifiability, because we need to estimate many pattern-specific parameters even though the eventual interest is usually on
the marginal parameters. In this article we extend this framework to a random pattern-mixture model, where the pattern-specific parameters
are treated as nuisance parameters and modeled as random instead of fixed. The pattern is defined according to a surrogate for the dropout
process. A constraint is then put on the pattern by linking it to the time to dropout using a random-effects survival model. We assume,
conditional on the latent pattern effects, that the longitudinal outcome and the dropout process are independent. This model retains the
robustness of the traditional pattern-mixture models, while avoiding the overparameterization problem. When we define each subject as a
separate stratum, this model reduces to the shared parameter model. Maximum likelihood estimates are obtained using an EM Newton–
Raphson algorithm. We apply the method to the depression data from the Prevention of Suicide in Primary Care Elderly Collaborative Trial
(PROSPECT). We show when the dropout information is adjusted for under the proposed model, the treatment seems to reduce depression
in the elderly.

KEY WORDS: Dropout; EM algorithm; Mixed-effects model; Pattern-mixture mode.

1. INTRODUCTION

Many longitudinal studies suffer from attrition, which can
cause bias in the analysis if the dropouts are informative.
To account for informative dropout, a number of model-
based approaches have been proposed to jointly model the
longitudinal outcome and the dropout mechanism (Wu and
Carroll 1988; De Gruttola and Tu 1994; Diggle and Kenward
1994; Schluchter 1992; Little 1993; Little 1994; Michiels,
Molenberghs, Bijnens, Vangeneugden, and Thijs 2002; Hogan
and Laird 1997a). (See Little 1995; Hogan and Laird 1997b;
and Kenward and Molenberghs 1999 for recent reviews.)
Among these approaches, pattern-mixture models (Little 1993)
are commonly used because of their robustness in modeling
the dropout mechanism. In this article we propose a random
pattern-mixture model in which the pattern-specific parameters
are treated as nuisance parameters and modeled as random. We
first generalize the definition of pattern. The pattern is defined
according to a good surrogate for the dropout process, which
can be a baseline or time-varying covariate, or time to dropout.
A constraint is then imposed on the pattern by linking it to the
time to dropout using a random-effects survival model (e.g.,
Clayton and Cuzick 1985). We assume, conditional on the latent
pattern effects, that the longitudinal outcome and the dropout
process are independent. This model retains the robustness of
the traditional pattern-mixture models, while avoiding the over-
parameterization problem. In the absence of a good surrogate
to define the pattern, we can define each subject as a separate
stratum, which reduces the model to a shared-parameter model
(Wu and Carroll 1988; De Gruttola and Tu 1994).

Our research was motivated by the PROSPECT (Preven-
tion of Suicide in Primary Care Elderly Collaborative Trial)
study (Bruce and Pearson 1999). The aim of this study was
to demonstrate that suicidality, hopelessness, and depression
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can be decreased by improving the recognition and interven-
tion of late-life depression in a representative sample of older
primary care patients. For patients diagnosed at baseline with
treatable depression, a comprehensive treatment schedule was
created. Of interest is whether using antidepressant medication
along with counseling improves depression levels compared
with only counseling with a depression specialist. The longitu-
dinal response of interest is the Hamilton 23 Depression score
(HAMD) obtained at each visit. Subject-specific random effects
are needed to account for the heterogeneity in longitudinal pro-
files. Because patients with a higher depression score are more
likely to drop out of the study, the dropout may be informative
and thus needs to be taken into account when modeling longi-
tudinal data. More details about the study and the analysis are
given in Sections 2 and 5.

Let Y denote the continuous outcome, R the time until the
subject drops out of the study, X the fixed-effects design matrix
for Y, and β the vector of unobserved random subject-specific
effects. The aim is to model p(Y,R|X) = ∫

p(Y,R,β|X)dβ.
Existing methods can be considered either selection models or
fixed pattern-mixture models.

Selection models use the factorization

p(Y,R,β|X) = p(Y|X,β)p(R|Y,X,β)p(β|X),

where p(Y|X,β) is a subject-specific longitudinal model and
p(R|Y,X,β) imposes an assumption on the dropout mecha-
nism. The shared parameter model [also termed the random
coefficient selection model by Little (1995)] can be considered
a special case of selection models, which assumes that condi-
tional on β and X, Y and R are independent and thus can be
modeled separately and linked by β ,

p(Y,R,β|X) = p(Y|X,β)p(R|X,β)p(β|X).

The justification for the conditional independence assumption
is that dropout is correlated with a latent subject-specific tra-
jectory captured by β . Calculation of the likelihood requires
integration over the random effects β and can be difficult to
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implement. Schluchter (1992) and De Gruttola and Tu (1994)
avoided this difficulty by using a joint normal approach for the
longitudinal outcome Y, time to dropout R, and the random ef-
fects β.

Pattern-mixture models stratify the data according to time to
dropout (termed dropout pattern), and form a model for each
stratum. The final estimate is a weighted average of the stratum-
specific estimate. The basic idea of pattern-mixture models is
that the dropout pattern provides good surrogate information on
the dropout process and, conditional on the pattern, the missing
mechanism is ignorable within a stratum, and thus information
from the complete cases can be borrowed to predict the incom-
plete cases. This implies the factorization

p(Y,R,β|X) = p(Y|X,β,R)p(β|X,R)p(R|X),

where p(R|X) is modeled as a multinomial distribution. How-
ever, a full pattern-mixture model is usually underidentified
because of the need to estimate many pattern-specific para-
meters. Constraints are needed to make the model identifiable
(Little 1995; Little and Wang 1996; Daniels and Hogan 2000).

In this article we present a random pattern-mixture model
that combines the features of the selection models and fixed
pattern-mixture models. We first generalize the definition of
pattern. First, based on a surrogate for the dropout process,
such as a baseline covariate, a time-changing covariate, or time
to dropout, we stratify the data into m strata (termed patterns).
The pattern effects are explicitly modeled as random effects and
used to link Y and R. This model implies the factorization

p(Y,R,β|X)

=
∫

p(Y|X,β,u,R)p(β|X,u,R)p(R|X,u)p(u|X)du

=
∫

p(Y|X,β,u)p(β|X,u)p(R|X,u)p(u|X)du, (1)

where u is the random pattern effects and p(R|X,u) im-
poses a constraint on the distribution of u. The assumptions
p(Y|X,β,u,R) = p(Y|X,β,u) and p(β|X,u,R) = p(β|X,u)

imply that Y and β depend on R through the random pattern
effects u. Although this factorization resembles the shared-
parameter model, the model borrows the fundamental idea of
stratification from the fixed pattern-mixture model. That is, con-
ditional on the latent pattern effects, the missing mechanism is
ignorable within a stratum, and final parameters of interest are
the marginal estimates averaging over the latent pattern effects
subject to certain constraints. When we define the pattern ac-
cording to time to dropout and impose a diffuse prior on the
pattern, this model reduces to the fixed pattern-mixture model.
If we stratify to the finest level (i.e., each subject forms its own
stratum), this model reduces to the shared parameter model.

Unlike the traditional pattern-mixture model that always de-
fines the patterns according to time to dropout, the proposed
method emphasizes the definition of patterns according to a
good surrogate of the dropout process. A good surrogate needs
to be related to both the outcome and the time to dropout, and
stratifying on the surrogate should result in conditional inde-
pendence of the two. The time to dropout itself is usually a
surrogate for the dropout process and can be used to define
the pattern. However, in the presence of censoring, the time to

dropout becomes less informative on the underlying dropout
process, and it is desirable to define the pattern based on other
covariates not affected by the censoring. The initial choice of
the surrogate can be based on the information from previous
studies, and the conditional independence assumption can be
checked from the data. The main advantage of the proposed
model over the shared-parameter model is that it allows in-
formation to be borrowed across subjects within a pattern be-
cause the longitudinal component and the dropout component
are linked at the pattern level instead of at the subject level.

This model has similar computational difficulty as the
shared-parameter models, because of the need to integrate over
u and β . To avoid this computational difficulty, we use a joint
normal approach. We model the random effects as normally
distributed and the outcome and dropout times as multivari-
ate normal, while adjusting for censoring. The EM algorithm
(Dempster, Laird, and Rubin 1977; Laird and Ware 1982) can
be used to calculate maximum likelihood estimates. To speed
up the calculations and to provide inference, we have also in-
vestigated a combined EM Newton–Raphson algorithm.

We begin by describing more details of the PROSPECT study
in Section 2. We then introduce the random pattern-mixture
model in Section 3. In Section 4 we describe an estimation pro-
cedure using an EM Newton–Raphson algorithm, and in Sec-
tion 5 we apply these methods to the data from the PROSPECT
study. We report simulations based on these results in Section 6,
and provide concluding remarks in Section 7.

2. THE PROSPECT STUDY

The PROSPECT study is an ongoing National Institute
of Mental Health-funded collaborative study conducted over
the past 4 years by the late-life mood disorders Interven-
tion Research Centers at Cornell University, University of
Pennsylvania, and University of Pittsburgh. The original de-
sign was given by Bruce and Pearson (1999). The overall aim
of the study is to demonstrate that the risk of suicidal ideation
in late life can be decreased by improving the recognition and
treatment of its primary risk factor, depression. Depression is
strongly associated with the risk of suicide and is relatively per-
vasive, ranging from 1% to 10% in the community-dwelling el-
derly. In addition, effective treatments for depression based on
best-practice guidelines exist but are not yet used adequately in
most cases of late-life depression occurring in the community.
Hence the intervention was based on a collaborative care model
for increasing patient and provider adherence to best-practice
guidelines for treating depression and related symptoms such as
suicidal ideation. The intervention integrated population-based
methodology with clinically sensitive assessment in elderly pa-
tients from 18 diverse primary care practices. Because the linch-
pin of the PROSPECT intervention is the addition of a health
specialist to the primary care setting, randomization was per-
formed via the primary care practices rather than at the subject
level.

The primary goal of the analysis described in this article is to
understand the effect of taking antidepressant medication on a
continuous depression outcome when the dropout information
is accounted for through stratification on physical functioning.
Because medication data are not yet available on the partici-
pants in the nonintervention group, the data for this analysis are
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limited to those patients attending one of the 10 intervention
practices. Further, only patients diagnosed with major depres-
sion [as diagnosed by the structured clinical interview for the
Diagnostical and Statistical Manual, edition 3 revised (DSM-
III-R)] are included, because these subjects are primarily the
target sample for treatment. Once a patient is diagnosed, the
physician can prescribe antidepression medication therapy. If
the patient does not want to take an antidepressant or does not
respond to one, then the physician can recommend interper-
sonal therapy or new medication provided by the study. The
focus of the analysis is on the difference in depression levels
for patients undergoing either of the two types of therapy.

For each of the 157 patients included in this analysis, a
comprehensive assessment of depression status was completed
at baseline and possibly reassessed after 4, 8, 12, 16, and
24 months. Depression was measured at each visit using the
Hamilton 23 Depression (HAMD) score. Patients with a higher
score are considered to be more depressed. The HAMD scores
over the study period ranged from 6 to 34. A total of 68 patients
(43.31%) dropped out of the study due to either death (suicide),
institutionalization, or failure to adhere to the prescribed ther-
apy. Two-thirds of the patients dropped out for the last reason,
with 20 of these dying. The remaining 89 patients are censored
at different follow-up appointments due to the staged entry into
the study. Figure 1 shows the HAMD scores over time for the
two groups. The patients who died may be sicker than those
lost to follow-up, and it is desirable to model the two types of
dropouts separately. However, given the relatively small num-
ber of dropouts due to death, we could not estimate with suffi-
cient precision the impact of the different types of drop out on
the results.

The motivation for our dropout model arises from the rela-
tionship among dropout, depression outcome, physical func-
tioning, and treatment. The ambulatory nature of the sample
(primary care elderly patients) makes physical function limita-
tions the major obstacle to visiting the primary care physician

(a)

(b)

Figure 1. Subject-Specific HAMD Profiles Over Time for the Two
Groups: (a) Interpersonal Therapy Patients; (b) Antidepressant Medica-
tion Therapy Patients.

Table 1. Descriptive Statistics for the PROSPECT Study by Pattern

Percent Average survival Average
Pattern n dropout time (weeks) HAMD score

1 9 67 23.11 16.05
2 16 63 37.00 12.75
3 11 45 29.09 16.03
4 15 53 39.47 13.49
5 9 22 61.33 11.88
6 18 44 70.52 11.35
7 15 40 52.47 12.69
8 23 39 52.45 11.66
9 29 38 54.45 11.13

10 12 25 58.37 9.84

(i.e., dropout). Furthermore, there is a strong relationship be-
tween depression and physical functioning, as there is between
antidepression treatment and physical functioning. Hence,
physical functioning is a good surrogate for the mediating effect
of dropout on the effect of treatment on depression outcome.
We stratify on physical functioning, such that strata range from
very little functional disability to severe functional disability
through death.

For these data, the patient’s physical ability is measured by
the physical functioning (PF) component of the patient’s SF-36
score at baseline. The SF-36 is a generic health status measure
(Ware, Snow, Kosinski, and Gandek 1993). The motivation for
using PF as the surrogate for the dropout process arose from its
reported relationship with depression, seeking healthcare, and
dropout. There have been reports that elderly patients with lim-
ited physical functioning are more likely to be depressed (e.g.,
Oslin, Streim, Katz, Edell, and Ten Have 2000) and are less
likely to seek treatment for their depression (Oslin et al. 2000).
In addition, Miller, Rejeski, Reboussin, Ten Have, and Ettinger
(2000) showed, based on a national survey of elderly persons,
that a strong relationship existed between declining physical
function and the propensity to dropout in the form of death and
institutionalization in assisted-care living residences. Further,
functional disability is seen as one of the major complications
in the diagnosis and treatment of depression, because it places
competing demands on the physician and can make it more dif-
ficult for the patient to follow the recommended therapy. These
relationships between physical functioning, depression, seeking
treatment, and dropout motivated the use of PF as the surrogate
variable.

Given the clinical motivation for the use of PF as the pattern
variable, we further checked its use via the data. The PF scores
ranged from 0 to 100, with higher scores indicating a more
functional patient. Patients with similar scores were stratified
together in 10-point increments, resulting in a pattern variable
with 10 strata. The average HAMD scores, and survival times
(calculated by fitting a Kaplan–Meier survival curve) for each
strata are shown in Table 1. It can be seen that the PF score is
clearly related to both time to dropout and HAMD score, with
an overall correlation coefficient of −.77. That is, patients with
lower PF scores usually have a higher HAMD score and tend
to drop out earlier. Thus the use of PF is further justified by
the data. We further check on the conditional independence as-
sumption of our model in Section 5.
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3. THE RANDOM PATTERN–MIXTURE MODEL

Based on a surrogate for the dropout process, such as the PF
component of the patient’s SF-36 score at baseline, we strat-
ify the data into m strata (termed patterns). We consider cases
where subject j is nested within the ith stratum. Let yij be an
nij×1 vector of observed outcomes for the jth subject within the
ith pattern, i = 1, . . . ,m, j = 1, . . . ,ni. Let rij be the correspond-
ing dropout time for this subject, with the observed dropout
time possibly being censored at some time point cij.

We model both the outcomes and the dropout times using
mixed-effects models (e.g., Schluchter 1992; De Gruttola and
Tu 1994), but link the two models by the random pattern ef-
fects. Without loss of generality, we write rij, even though some
transformation [e.g., log(rij)] of the dropout times is generally
used. Thus,

yij = X1ijα1 + Zijβ ij + Wijui + eij (2)

and

rij = xT
2ijα2 + bT ui + εij, (3)

where X1ij, Zij, and Wij are the known design matrices for
the fixed effects, subject-level random effects, and pattern-level
random effects for yij; α1 is the vector of unknown fixed effects;
β ij ∼ N(0,�β) is a vector of unknown subject-level random ef-
fects; ui ∼ N(0,�u) is a vector of unknown pattern-level ran-
dom effects; eij ∼ N(0, σ 2

e Iij) is a vector of residuals; x2ij is
the known design matrix linking the unknown parameter vec-
tor α2 to rij; b is an unknown parameter vector linking ui

to rij; and εij ∼ N(0, s2) is the residual for rij. Further, δij is
used to indicate whether rij is observed (δij = 1) or censored
(δij = 0). The set of parameters to be estimated in this model is
θ = (α1,α2,b,�β ,�u, σ 2

e , s2).
This model assumes that conditioning on the latent pattern

effects, the missing-data mechanism is ignorable within a stra-
tum. The informativeness of the dropout is modeled by (3),
which imposes a constraint on the random pattern effects ui.
When b = 0, the model reduces to an ignorable dropout model.

4. ESTIMATION

By treating ui and β ij as missing data, we can use an EM al-
gorithm (Dempster et al. 1977) to calculate the maximum like-
lihood estimates (MLEs) of the parameters. These are found
in two steps. The E-step involves finding the conditional ex-
pectation of the sufficient statistics for the complete data log-
likelihood. These expected values are then used to estimate the
model parameters in the M-step that maximizes the expected
log-likelihood. However, a straight EM approach requires cal-
culation of two levels of expectations, pattern-level expecta-
tions and subject-level expectations. Instead, we estimate the
parameters via a combined EM Newton–Raphson algorithm
that contains only pattern-level expectations. This is accom-
plished by absorbing the subject-level random effects (Zijβ ij)
into the error term in (2), resulting in a new, structured error
covariance matrix for the repeated measures. This new error
term is given by e∗

ij = Zijβ ij + eij, where e∗
ij ∼ N(0,� ij) and

� ij = Zij�βZT
ij + σ 2

e Iij.
In the combined approach, the E-step still finds the con-

ditional expectation of the sufficient statistics. However, in

the M-step, there is no closed-form solution for �β and σ 2
e .

A Newton–Raphson algorithm is used to calculate the estimates
for �β , σ 2

e , and hence � ij. Then, conditional on these values,
parameter estimates for the fixed effects, �u, and s2 are calcu-
lated.

The complete-data log-likelihood for the EM part of the al-
gorithm is given by

lc =
m∑

i=1

ni∑

j=1

logφ(yij|X1ij,ui, θ̂)φ(ui|θ̂)φ(rij|x2ij,ui, θ̂),

where φ(·) is the normal density function. Using this likelihood,
the sufficient statistics needed for the M-step include

∑

i

∑

j

ε2
ij,

∑

i

niuiuT
i ,

∑

i

∑

j

Wijui,

∑

i

∑

j

rijui,
∑

i

∑

j

x2ijkui, 1 ≤ k ≤ nij.

Closed-form solutions for their expectations are given in the
Appendix.

The expected sufficient statistics calculated in the E-step
are then used to calculate the estimates in the M-step. Given
�β and σ 2

e , and hence � ij, we can obtain the estimates

α̂1 =
(∑

i

∑

j

XT
1ij�

−1
ij X1ij

)−1

× E

(∑

i

∑

j

XT
1ij�

−1
ij (yij − Wijui)

)

,

α̂2 =
(∑

i

∑

j

x2ijxT
2ij

)−1

E

(∑

i

∑

j

x2ij(rij − bui)

)

,

b̂ =
(

E

(∑

i

niuiuT
i

))−1

E

(∑

i

∑

j

(rij − xT
2ijα2)ui

)

,

�̂u =
(∑

i

ni

)−1

E

(∑

i

niuiuT
i

)

,

and

ŝ2 =
(∑

i

ni

)−1

E

(∑

i

∑

j

ε2
ij

)

,

where, for simplicity, we write E(·) when we mean the con-
ditional expectations E(·|yi, ri,�i, θ̂), with �i = diag(δi1,

. . . , δini). We continue to use this notation in the following,
where no confusion will arise. We then calculate

ê∗
ij = yij − X1ijα̂1 − E(Wijui),

which can be used to calculate the expected log-likelihood.
This expected log-likelihood is a function of �β and σ 2

e ,
and a Newton–Raphson algorithm can be used to obtain the
estimates for �β and σ 2

e that maximize the expected log-
likelihood.

Standard errors for the fixed effects can be obtained via the
formula of Louis (1982). The conditional covariance matrix for
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the fixed effects [α1α2] at convergence is

cov

([
α̂1
α̂2

])

=
(

∑

i

[
X1i 0
0 X2i

]T

× C−1
22 (i)(Ii − �iAi�iC

−1
22 )

[
X1i 0
0 X2i

])−1

,

(4)

where X1i, X2i, C−1
22 (i), and Ai are as given in the Appendix.

Closed-form solutions for the standard errors of the remaining
parameters are difficult to obtain. Consequently, we use para-
metric bootstrapping to estimate the standard errors.

5. APPLICATION TO THE PROSPECT STUDY

We now return to the PROSPECT study described in Sec-
tion 2. We applied four models to the data: a standard mixed
model assuming no link between dropout and outcome, a
shared-parameter model, and two random pattern-mixture mod-
els with two different patterns. The first pattern was based
on the observed dropout/censoring times of the subjects. We
grouped together patients who dropped out or were censored
at the same time point, resulting in a pattern with five strata.
We also tried to separate the dropouts and censors into differ-
ent patterns, which resulted in too-sparse a stratification and
failure of the model to converge. The other pattern was based
on the PF component of the patient’s SF-36 score, which was
measured only at baseline. Patients with similar scores were
stratified together in 10-point increments, resulting in a pattern
variable with 10 strata. We also tried other stratifications on the
PF scores using different cutpoints and different numbers of
strata, but found that the results are not sensitive to the group-
ing. This is due to the fact that we build the conditional inde-
pendence on the latent pattern effects instead of conditioning
on the patterns themselves, and the normal prior on the latent
pattern effects is a weak constraint. The 10-point increments
ultimately used were selected for ease of clinical interpretation.

The missing at random mixed-effects model for the longi-
tudinal outcome was used to determine the possibly signifi-
cant effects for the more-complex shared parameter and random

pattern-mixture models. Of the patient demographic informa-
tion recorded, only gender is significant (p = .02). The other
variables, such as age (p = .74), are highly insignificant. Only
the significant demographic variables and the variable of inter-
est (treatment) are presented here for ease of comparison be-
tween the models. For the random effects, most covariances are
approximately equal to 0. These include random slope effects,
based on time, at both the subject and pattern level, as well as
a treatment–pattern interaction. Hence, only random intercepts
are used in the final models. The results for the four models are
given in Table 2 and the following final equations:
Random dropout model:

HAMDij = α10 + α11(Visit time) + α12(Treatment)

+ α13(Gender) + βij + ui + eij,

log(Dropout time)ij = α20 + α21(Treatment) + εij.

Shared parameter model:

HAMDij = α10 + α11(Visit time) + α12(Treatment)

+ α13(Gender) + βij + eij,

log(Dropout time)ij = α20 + α21(Treatment) + bβij + εij.

Random pattern-mixture models:

HAMDij = α10 + α11(Visit time) + α12(Treatment)

+ α13(Gender) + βij + ui + eij,

log(Dropout time)ij = α20 + α21(Treatment) + bui + εij,

where βij and ui are the subject and pattern level random inter-
cepts.

For the random dropout model, there is an average decrease
in the HAMD scores of .57 per month ( p < .0001). Also, males
have a 2-point lower HAMD score ( p = .02) on average. Al-
though the treatment effect was not significant, it is interesting
to note that it was positive. This implies that using the anti-
depressant medication increases one’s HAMD score, and hence
the average patient is more depressed on medication. Similar re-
sults are also obtained using the shared-parameter model. These
results contradict with the expectation.

Table 2. Results From Modeling the HAMD Scores and Log(dropout times) for the PROSPECT
Study, Assuming No Link Between the Two Models, a Link at the Subject Level, and Two

Different Links at the Pattern Level Based on PF Score and on Dropout Times

Random
dropout

Shared
parameter model

Random pattern-mixture model

Parameter PF scores Dropout time

Model for HAMD
Intercept 16.41(.606) 16.40(.53) 16.82(.51) 15.72(.52)
Time −.57(.04) −.57(.05) −.61(.04) −.53(.05)
Treatment .24(1.10) .25(1.03) −.25(.73) .24(.86)
Gender −2.07(.91) −2.05(.86) −2.22(.62) −1.82(.59)
�β 18.75(3.24) 18.70(2.86) 14.20(2.43) 11.98(1.83)
�u .46(.03) .27(.13) .66(.23)
σ 2

e 29.03(2.06) 33.65(2.34) 33.71(3.08) 36.11(3.60)

Model for Log(dropout times)
Intercept 4.18(.08) 4.18(.09) 4.06(.04) 4.52(.01)
Treatment −.53(.16) −.54(.19) −.44(.12) −.12(.04)
b −.01(.02) −.22(.09) −.34(.24)
s2 .70(.06) .49(.05) .38(.06) .06(.07)

NOTE: Parameter estimates are given with standard errors in parentheses.
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In the random pattern-mixture model with the PF score pat-
terns, the link parameter is significant, which suggests that the
dropout is informative. Under this model, most of the estimates
are similar to the previous two models. The standard errors are
substantially smaller, because the significant link between the
two outcomes allow information to be borrowed across the out-
comes. There is a large difference in the estimate of the treat-
ment effects. Although it is still not significant, it now has a
negative value. Thus, when the dropout information is more ad-
equately incorporated, use of the medication lowers the HAMD
scores, implying that antidepressants help the average patient to
feel less depressed. This result is as expected medically.

When the patterns are based on the dropout times, the esti-
mate for the treatment effect reverts to being positive. The link
parameter is not significant, indicating that the dropout time
pattern may not be a good surrogate for the dropout process.
The observed dropout distribution is a mixture of non-health-
related censoring and dropout related to depression and treat-
ment. Because the distinction between the two is not recorded
and there is heavy censoring, stratification based on the ob-
served dropout times may not be able to adequately correct the
bias due to informative dropouts. Comparing the results from
the proposed model using the PF score as the pattern variable,
the positive treatment coefficient found in the random dropout
model, shared-parameter model, and random pattern-mixture
model using a dropout time pattern may simply be a side effect
of not adequately accounting for the dropout process. Because
the three models yield different estimates in the application, we
investigate the sensitivity through simulations in the next sec-
tion.

We assessed the assumption of conditional independence in
the random pattern-mixture models from the fitted residuals.
We calculated the residuals from both the longitudinal and
dropout models. The residuals are approximately iid normal.
In the model using PF score as the pattern, the residuals for
the two outcomes are not correlated, with a correlation coeffi-
cient of −.08. This indicates that adjusting for their relation-
ship based on PF score resulted in conditional independence.
The correlation in the model using dropout time as pattern is
greater, with a correlation coefficient of −.14, indicating that
the stratifying on the time to dropout may not lead to condi-
tional independence.

6. SIMULATION

To study the sensitivity of the model assumptions, we sim-
ulate data using different assumptions and fit different models
to investigate how much the results changed accordingly. We
conducted three simulation studies, generating 500 replicates
of the data in each simulation, as follows. Given the known
fixed effects, random effects, and link parameter values, plus
the error covariances and pattern assignments (for the random
pattern-mixture model), we generated dropout times for each of
the 157 subjects. Based on these dropout times, we calculated
an “exit” time so that approximately 60% of the subjects were
censored. The observed dropout times and dropout indicators
could then be calculated. We generated the repeated-measures
data based on the observed dropout times. That is, we generated
the data only at baseline and at follow-up times that were less

than the observed dropout times. Once each replicate was gen-
erated using the true known parameter values associated with
the underlying model, we fitted a number of different models to
the data.

In the first simulation, the true underlying model was as-
sumed to be the proposed random pattern-mixture model,

HAMDij = 16.82 − .606(Visit time) − 1.33(Treatment)

+ 2.22(Gender) + βij + ui + eij,

rij = 6.06 − 2.45(Treatment) − 1.09ui + εij,

where rij is the log transformation of the dropout time, βij ∼
N(0, 5.15), ui ∼ N(0, 4.5), eij ∼ N(0, 4.03), and εij ∼
N(0, 3.38). We fit a shared-parameter model and two ran-
dom pattern-mixture models, one of which uses the true pattern
and the other uses time to dropout to create the pattern. Fig-
ure 2 summarizes the results for the fixed effects. Because the
true dropout model includes only treatment, only the treatment
effect varies substantially across different models. The shared-
parameter model underestimates the size of the treatment ef-
fect. The random pattern-mixture model using the true pattern
produces a very accurate estimate. The one using the time to
dropout as the pattern overestimates the size of the treatment
effect. This simulation suggests that in the presence of dropout,
one should try to collect related covariates, such as SF36-PF,
and include this information in the analysis. Simply stratifying
the data by subject or by time to dropout does not always cor-
rect the bias. The shared-parameter model also overestimated
�β and s2. The overestimate of �β is expected, because it is
trying to capture both �β and �u from the true model. Us-
ing the time-to-dropout pattern, s2 is highly underestimated,
whereas the remaining covariances are overestimated.

For the second simulation, we assumed the true model to be

Figure 2. Simulation Results Assuming That the True Model Is a Ran-
dom Pattern-Mixture Model Linked at the Pattern Level. The true values
are indicated by the dashed lines. Y indicates estimates from the longi-
tudinal model, R indicates estimates from the dropout model. 1, shared
parameter model; 2, random pattern-mixture model linked at the true
pattern; 3, random pattern-mixture model using dropout time pattern.
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a shared-parameter model,

HAMDij = 16.82 − .606(Visit time) − 1.33(Treatment)

+ 2.22(Gender) + βij + eij,

rij = 6.06 − 2.45(Treatment) − 1.09βij + εij.

The first “pattern” is created by randomly grouping the subjects
into 10 strata. This allows us to investigate the effect on the es-
timates obtained from the random pattern-mixture model using
a noninformative pattern variable when the two outcomes are
linked at the subject level. The second pattern is based on time
to dropout. The results from fitting a shared-parameter model
and two random pattern-mixture models are shown in Figure 3.
As expected, the shared-parameter model produces accurate es-
timates when it is the true underlying model. The model using
time to dropout as the pattern variable results in biased esti-
mates for the treatment effects, as well as the covariance es-
timates. When a noninformative pattern variable is used, the
fixed-effects estimates from the random pattern-mixture model
are underestimated by an average of 4.5%, and the standard er-
rors are inflated by an average of 7.3%. The 95% confidence in-
terval coverages of the fixed effects are also slightly below the
nominal level (90.6% on average). Also, s2 is over-estimated,
whereas �β is slightly underestimated due to the addition of the
pattern random effect. This suggests that even when the true un-
derlying model is the shared-parameter model, fitting a random
pattern-mixture model using a noninformative pattern variable
can still correct some bias, but the estimates are not as efficient
as those obtained from the true model.

For the third simulation, we assumed that the longitudinal
outcome and the dropout process were linked by the underlying
true dropout times (without censoring). That is, we assumed
that we knew the true underlying dropout time and used this

Figure 3. Simulation Results Assuming That the True Model Is a
Shared Parameter Model Linked at the Subject Level. The true values
are indicated by the dashed lines. Y indicates estimates from the longi-
tudinal model, R indicates estimates from the dropout model. 1, shared
parameter model; 2, random pattern-mixture model using noninforma-
tive pattern; 3, random pattern-mixture model using dropout time pat-
tern.

information in generating the longitudinal outcomes,

HAMDij = 6.82 − .606(Visit time) − 1.33(Treatment)

+ 2.22(Gender) + βij + .05rij + eij,

rij = 6.06 − 2.45(Treatment) + εij,

where βij ∼ N(0,6.15), eij ∼ N(0,1.53), and εij ∼ N(0,3).
A random censoring time cij is drawn from a uniform distribu-
tion on [0, rij/.6]. The subject is labelled as censored if rij > cij,
and as dropout if otherwise. This led to approximately 60% of
the subjects being censored. We also created a surrogate of the
true underlying dropout time: x∗

ij such that corr(x∗
ij, rij) = .75.

We then defined three patterns. The first two patterns were
based on the observed dropout/censoring times, with one pat-
tern ignoring the dropout/censoring indicator and the other
pattern having separate patterns for the dropout and censored
subjects. The third pattern was based on the surrogate x∗

ij. We
created 10 strata in each setting according to the percentiles of
the observed variable. This resulted in 20 strata for the model
with separate patterns for the dropout and censored subjects.
We fitted a shared-parameter model and three random pattern-
mixture models. Figure 4 summarizes the results for the fixed
effects from the HAMD model. The estimates for most of the
parameters are biased under the shared parameter model and
the model linked by the pattern based on the observed dropout
time (indicator ignored). The random pattern-mixture model us-
ing the pattern based on the surrogate x∗

ij produces satisfactory
results. The model with separate patterns for the censored and
dropout subjects also produces satisfactory results for all para-
meters except the intercept. The one using the observed time to
dropout, ignoring the indicator, to define patterns leads to bi-
ased results. This is due to the fact that we treated the time to
censoring and time to dropout the same in creating the patterns.
Subjects with quite different true underlying dropout times are

Figure 4. Simulation Results Assuming That the Longitudinal Out-
comes Are Directly Linked to the True Dropout Times Before Censoring
Occurred. The true values are indicated by the dashed lines. Y indi-
cates estimates from the longitudinal model. 1, shared parameter model;
2, random pattern-mixture model using surrogate patterns; 3, random
pattern-mixture model using patterns based on dropout/censoring time;
4, random pattern-mixture model with 20 patterns based on dropout and
censoring times separately.
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grouped together. Thus this stratification does not adequately
model the true underlying link.

The proposed random pattern-mixture model provides a flex-
ible framework to account for informative dropouts in lon-
gitudinal data analysis. The key modeling assumption is that
conditional on the random pattern effects, the longitudinal out-
come, and the time to dropout are independent. This assump-
tion can be checked from the data. Under this framework, the
shared-parameter model can be viewed as a special case, with
each subject being its own pattern. The three simulations to-
gether suggest the importance of finding a good pattern variable
in the modeling of longitudinal data with informative dropouts,
which can be a baseline or time-varying covariate, time to
dropout, or the subjects themselves. An inappropriate choice of
the pattern variable can lead to biased and inefficient estimates.

7. CONCLUSION

We have proposed a random pattern-mixture model for lon-
gitudinal data with dropouts. This model borrows the funda-
mental idea of stratification from the traditional pattern-mixture
models, and thus does not require explicit specification of
the dropout mechanism. Unlike the traditional pattern-mixture
models that fit a model for each pattern, we treat the pattern-
specific parameters as nuisance parameters and explicitly model
them as random. A constraint is put on the random pattern ef-
fects by linking them to the time to dropout. The parameters
of interest are the marginal parameters after integrating out the
random pattern effects. This model avoids the overparameteri-
zation problem of the fixed pattern-mixture model while retain-
ing its robustness.

We have also extended the definition of “dropout pattern” to
be “stratification according to a surrogate.” In defining the pat-
tern, one should explore covariates that can provide information
on the underlying dropout process, because the key assumption
of the model is that, conditional on the latent pattern effects,
the longitudinal outcome and the time to dropout are indepen-
dent. Violating this assumption can lead to biased estimates and
invalid inferences. Although time to dropout is usually a good
surrogate for the underlying dropout process, in the presence of
heavy censoring, the observed dropout time may no longer be a
good surrogate for defining the pattern.

We fitted the proposed method to data from the PROSPECT
study, in which the dropouts were thought to be informative.
The PF component of the SF-36 was found to be a good surro-
gate for the dropout process, because it was related to both the
time to dropout and the HAMD scores. We showed that strati-
fying on the PF score led to conditional independence of time
to dropout and the longitudinal outcome. When dropout infor-
mation is adjusted for under our proposed model, the treatment
seems to reduce depression in the elderly.

APPENDIX: COMPUTATIONAL FORMULAS FOR THE
EM NEWTON–RAPHSON ALGORITHM

The expectations of the sufficient statistics involving the pattern
effect, ui, can be derived from the multivariate normal distribu-
tion φ(ui,yi, ri) and the assumption that yij and rij are condition-
ally independent. Combining the various matrices and vectors for
all subjects within pattern i, we obtain yi = [yT

i1, . . . ,yT
ini

]T , X1i =

[XT
1i1, . . . ,XT

1ini
]T , Wi = [WT

1i1, . . . ,WT
1ini

]T , ri = [ri1, . . . , rini ]T ,

X2i = [x2i1, . . . ,x2ini ]T , and �̃ i = diag(�1i1,�1i2, . . . ,�1ini). Thus

�yi = cov(yi,yi) = Wi�uWT
i + �̃ i,

�yri = cov(yi, ri) = Wi�ub1T
ni

,

�ri = cov(ri, ri) = (bT�ub)Jni + s2Ini ,

C22(i) = cov

(
yi
ri

)

=
[

�yi �yri

�T
yri

�ri

]

.

We can then use the properties of the multivariate normal distribution
to derive

ûi = E(ui|yi, ri, θ̂)

= [�uWT
i �ub1T ] C−1

22 (i)

[
yi − X1iα1
r̂i − X2iα2

]

, (5)

�⇒
var(ui|yi, ri, θ̂)

= �u − [�uWT
i �ub1T ] C−1

22 (i)

× [�uWT
i �ub1T ]T

E(uiuT
i |yi, ri, θ̂)

= [�uWT
i �ub1T ] C−1

22 (i)AiC
−1
22 (i) [�uWT

i �ub1T ]T

+ var(ui|yi, ri, θ̂) (6)

where

Ai =










(yi − X1iα1)(yi − X1iα1)
T

(yi − X1iα1)(r̂i − X2iα2)T

(r̂i − X2iα2)(yi − X1iα1)T

r̂irT
i − r̂iα

T
2 XT

2i − X2iα2r̂T
i + X2iα2αT

2 XT
2i










and the values of r̂i = E(ri|yi, ri, θ̂) and r̂irT
i = E(rirT

i |yi, ri, θ̂) de-
pend on whether the subjects informatively dropped out of the study
or were censored. If a subject dropped out, then his or he expected
value is simply the observed dropout time. If the subject was cen-
sored at cij, then we need expressions for r̂ij = E(rij|yi, rij > cij, θ̂)

and E(rijri|yi, rij > cij, θ̂). These can be found using the properties of

truncated normal distributions and �
−1/2
ri (ri − X2iα2) ∼ N(0, I).

Using these, we can also calculate E(rijui|y, θ̂),

E(rijui|y, θ̂) =






rijûi if δij = 1

C12C−1
22 (i)

[
r̂ij(yi − X1iα1)

E(rijri| · · ·) − r̂ijX2iα2

]

if δij = 0.

Note also that C−1
22 (i) can be calculated efficiently, without the inver-

sion of a matrix of rank
∑

j(nij + 1) for each i, because of its block
compound symmetric structure.

To calculate the expectation of the remaining sufficient statistic, we
use the multivariate normal distribution of φ(εij,yi, ri). Thus

E(εij|yij, rij, θ̂) = [ 0T �ε ] C−1
22 (i)

[
yi − X1iα̂1

r̂i − XT
2iα̂2

]

,

cov(εij|yij, rij, θ̂) = s2 − [ 0T �ε ] C−1
22 (i) [ 0T �ε ]T

�⇒

E(ε2
ij|yij, rij, θ̂) = [ 0T �ε ] C−1

22 (i)AiC
−1
22 (i) [ 0T �ε ]T

+ cov(εij|yij, rij, θ̂),

where Ai, C22(i), and r̂i are as given previously.

[Received September 2002. Revised March 2004.]
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